Skip to Content
ToolsTools & Software

Tools & Software

Software ecosystems for AI in science — organized by domain.

Overview

The AI4Science ecosystem includes tools for:

  • Data Processing — Reading, manipulating, and featurizing scientific data
  • Machine Learning — Training and deploying models
  • Visualization — Exploring and presenting results
  • Workflows — Reproducible research pipelines

Tools by Domain

DomainKey Tools
ChemistryRDKit, DeepChem, Chemprop
BiologyDeepChem, DGL-LifeSci
Materialspymatgen, matminer, ASE

Cross-Domain Tools

Deep Learning Frameworks

ToolDescriptionLink
PyTorchPrimary DL framework for sciencepytorch.org 
PyTorch GeometricGraph neural networkspyg.org 
DeepChemML for chemistry and life sciencesdeepchem.io 

Data Science

ToolDescriptionLink
JupyterInteractive notebooksjupyter.org 
pandasData manipulationpandas.pydata.org 
scikit-learnClassical MLscikit-learn.org 

Environment Setup

# Install miniconda # https://docs.conda.io/en/latest/miniconda.html # Create environment conda create -n ai4science python=3.10 conda activate ai4science # Install core tools pip install jupyter pandas numpy scikit-learn matplotlib pip install torch

Google Colab

For quick experiments without local setup, use Google Colab . Most tutorials include “Open in Colab” badges.