Skip to Content
ChemistryChemistry Tutorials

Chemistry Tutorials

Hands-on notebooks and practical guides for cheminformatics and computational chemistry.

Practical Cheminformatics

github.com/PatWalters/practical_cheminformatics_tutorials 

Patrick Walters — Jupyter & Colab notebooks covering clustering, SAR analysis, ML, and active learning.

TeachOpenCADD Talktorials

projects.volkamerlab.org/teachopencadd/talktorials.html 

Volkamer Lab — Comprehensive “talktorials” (talk + tutorial) covering computer-aided drug design from basics to advanced topics.

Neural Networks for Chemists

github.com/omics101/acs-neural-networks 

ACS In Focus (2024) — First-step knowledge for applying neural networks in chemistry research.


Tutorial Directory

Cheminformatics Basics

TutorialTopicsFormat
Practical Cheminformatics Fingerprints, clustering, SARJupyter/Colab
TeachOpenCADD T001-T010 Molecular data, fingerprints, similarityJupyter
RDKit Cookbook RDKit fundamentalsDocumentation

Machine Learning for Chemistry

TutorialTopicsFormat
Neural Networks for Chemists NN fundamentals for chemistryJupyter
Transformers for Chemistry LLMs, transformersJupyter
DeepChem Tutorials GNNs, molecular property predictionJupyter

Reaction Prediction

TutorialTopicsFormat
AI4Chemistry Course Labs Reaction prediction, retrosynthesisJupyter

Running Tutorials

Google Colab: Most tutorials can be run directly in Google Colab without local setup. Look for the “Open in Colab” badge.

Local Setup

# Create a conda environment conda create -n chem python=3.10 conda activate chem # Install core dependencies pip install rdkit jupyter pandas numpy scikit-learn # For deep learning pip install torch deepchem